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In today’s service-oriented digital environment, ensuring the quality of service (QoS) is crucial, which makes
QoS prediction a prominent topic in current research on Web service recommendation. Recently, some existing
works have made signi�cant advancements in modeling both users and services. However, several key issues
have not been well studied in existing research, including issues related to bilateral trust, user preferences, and
privacy protection. To e�ectively resolve these concerns, we put forward TEPP, a robust trust-enhanced privacy-
preserving QoS prediction method for Web service recommendation. First, we evaluate user reputation values
through the Dirichlet distribution and integrate user similarity to jointly compute trust values between users,
thereby identifying a group of trustworthy and similar users. At the same time, we utilize an exponential mecha-
nism to protect the privacy of user information. Secondly, we calculate the preference similarity between users,
taking into account their preferences. Finally, we determine a set of trustworthy similar services by combining
the reputation value and similarity of the service providers, and predict missing QoS by a fusion model that
integrates the above three methods. To make TEPP more practical and robust in Web service recommendation,
we embed a bilateral trust model in TEPP based on evolutionary game theory to constrain and guide users and
service providers to honestly participate in the Web service recommendation. Experimental simulation results
demonstrate that the proposed scheme not only outperforms existing schemes in prediction accuracy but also
can fully motivate both users and service providers to choose trusted strategic behaviors in the Web service
recommendation.

1. Inroduction

With the advancement of the Internet, signi�cant impetus has been
given to the development of areas such as cloud computing, the Internet
of Things (IoT), and big data processing, establishing a solid foundation
for various service-oriented downstream tasks (Chen et al., 2024; Hassan
et al., 2020; Li et al., 2014; Liu & Chen, 2019; Mezni, 2023). Choosing
high-quality Web services is crucial for applications like the IoT, as it not
only enhances application reliability but also improves user experience,
ensuring more e�cient collaboration among devices (Li & Lin, 2020;
Xie et al., 2019; Xu et al., 2016). Therefore, in these diverse applica-
tion scenarios, research on QoS prediction becomes especially urgent to
meet the pressing demands of various domains for e�cient performance
and exceptional user experience (Chen et al., 2020; Fiedler et al., 2010;
Zheng et al., 2012b).

QoS represents the non-functional aspects of services, such as re-
sponse time, availability, reliability, and throughput (Ghafouri et al.,
2020; Zheng et al., 2020). These attributes can profoundly in-
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�uence users’ service experience and satisfaction. Hence, service
providers frequently utilize QoS metrics to monitor and improve their
services, ensuring they meet users’ expectations and requirements. Per-
sonalized QoS prediction and Web service recommendation are crucial
in today’s digital environment. Predicting client QoS allows users to gain
a more precise understanding of the expected performance tailored to
their speci�c situations and needs. Moreover, Web service recommenda-
tions derived from these predicted QoS values can guide users in select-
ing services most likely to meet their requirements, thereby assisting
them in developing high-quality applications. This approach not only
enhances the user experience but also contributes to enhancing the over-
all e�ciency and e�ectiveness of Web services.

Collaborative �ltering is widely regarded as a fundamental technique
for QoS prediction, leveraging historical behavioral patterns of users or
services to estimate missing QoS values (Zheng et al., 2020). In recent
years, with the continuous increase in data scale and the complexity
of network services, an increasing number of studies have introduced
deep learning methods to further enhance the model’s capability in
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capturing complex interactive relationships (Zhang et al., 2024a,b; Zou
et al., 2022). However, QoS data are usually uploaded by users, and
their reliability is di�cult to guarantee. In particular, data provided by
untrusted users may introduce noise, which seriously a�ects prediction
accuracy (Tao et al., 2012; Zheng et al., 2020). Therefore, introducing
a user reputation mechanism and performing weighted evaluations of
data have become important approaches to improve prediction reliabil-
ity. Although existing methods have made some progress in prediction
accuracy, current QoS prediction still faces the following key issues:

Bilateral trust issues. (1) The QoS values provided by certain un-
trustworthy users may lack reliability. (2) The existing literature hardly
considers whether the service provider is trustworthy, which makes it
impossible to determine whether the services it provides are bene�cial
to users. Hence, users are encouraged to submit feedback on service
providers, enabling an assessment of the credibility of service providers
through user-provided information.

User’s actual preferences are ignored. User preferences are criti-
cal to QoS prediction in Web service recommendation, as they directly
a�ect both user expectations and satisfaction. Taking these preferences
into account leads to more tailored and e�ective service recommenda-
tions.

Privacy issues related to QoS prediction. User private information
can be inferred from submitted QoS values, so how to improve predic-
tion accuracy while ensuring user privacy remains a key challenge.

To tackle the problems mentioned above, we propose TEPP, a ro-
bust trust-enhanced privacy-preserving QoS prediction method for Web
service recommendation, which is based on the Dirichlet distribution,
di�erential privacy, and evolutionary game theory. In TEPP, the Dirich-
let distribution is used to calculate the user’s reputation value, and then
calculate the user’s trust value; di�erential privacy is used to protect
the user’s privacy; and evolutionary game theory is used to ensure the
robustness of the entire system, which stabilizes the trust between users
and service providers. The primary focus of this article can be summa-
rized as follows:

• We employ the Dirichlet distribution to evaluate user reputation
and incorporate an enhanced similarity measure to calculate user
trust values for identifying credible similar users. Meanwhile, we in-
troduce an exponential mechanism to protect user privacy, thereby
achieving an organic integration of QoS data reliability and privacy
protection.

• We propose a robust trust-enhanced privacy-preserving QoS predic-
tion method, TEPP, which integrates QoS prediction based on trusted
users, user preferences, and trusted service-oriented approach. The-
oretically, we demonstrate that our fusion model adheres to ✏-
di�erential privacy.

• We design a bilateral trust model based on evolutionary game theory
to stabilize trust relationships between users and service providers,
thereby ensuring the overall robustness of the system.

• Extensive experiments on real QoS datasets verify the superiority
of TEPP. Experimental results demonstrate that TEPP not only out-
performs existing solutions in performance but also can e�ectively
ensure the robustness of the model by motivating both users and
service providers to choose trusted policy behaviors during the Web
service recommendation.

The rest of this work is structured as follows. We brie�y introduce some
existing work in Section 2. Section 3 presents the basics of this paper,
including the Dirichlet distribution and di�erential privacy. Section 4
introduces the detailed construction of the proposed scheme. Section 5
introduces the bilateral trust model. Section 6 presents comprehensive
experiments along with detailed discussions and analysis. Finally, Sec-
tion 7 summarizes the proposed method and new �ndings and shares
future research directions.

2. Related work

QoS prediction, as a critical component of Web services, has
gained increasing prominence due to the rapid development of cloud
computing, the IoT, and 5G technology. The growing complexity and
demands of networks underscore the escalating importance of QoS pre-
diction. In this section, we conduct a concise review focusing on two
main aspects, which are primarily distinguished by the presence or ab-
sence of privacy protection measures.

2.1. Traditional QoS prediction methods

QoS prediction has attracted signi�cant attention in the �eld of net-
working research, experiencing a notable increase in associated studies
and developments. Most of the earlier solutions were grounded in col-
laborative �ltering methods (Zheng et al., 2011, 2020). Nevertheless,
collaborative �ltering-based prediction methods encounter challenges
related to data sparsity and credibility. To address these issues, Wang
et al. (2020) presented a QoS prediction scheme based on reputation-
aware network embedding, which e�ectively mitigates the data sparsity
problem and improves the prediction accuracy of collaborative �ltering
by constructing a user-service bipartite network. Chen et al. (2023) pro-
posed a novel QoS prediction algorithm that transforms traditional local
optimization aggregation into a global search based on swarm intelli-
gence, enabling the prediction of missing values across the entire QoS
distribution space. To achieve personalized and reliable QoS prediction
in cloud environments, Liu and Chen (2019) introduced a method based
on K-medoids clustering and trust-awareness for prediction and service
recommendation. Su et al. (2017) presented a novel prediction method
that calculates user trust values through K-means clustering and a Beta
mechanism, and predicts QoS based on users or service groups with sim-
ilar trust. With the development of graph representation learning, Zhu
et al. (2023) applied graph contrastive learning for QoS prediction, aim-
ing to tackle the cold start and data sparsity issues that traditional meth-
ods. Chang et al. (2021) employed the matrix factorization method of
graphs to devise a QoS prediction model capable of signi�cantly enhanc-
ing prediction accuracy. To address the limitations of traditional neural
networks in QoS prediction, Zou et al. (2023) devised a �exible QoS pre-
diction approach by fusing location-aware neural prediction techniques
with neighborhood-based collaborative �ltering strategies to construct
an adaptive prediction model. Li et al. (2021) introduced a topology-
aware neural model framework that achieves accurate QoS prediction
by e�ciently utilizing contextual information and avoids dependence
on the underlying network topology and complex interactions of au-
tonomous systems.

In addition, in recent years, there have been studies devoted to
proposing hybrid schemes that integrate traditional collaborative �lter-
ing methods with other methods to improve the QoS prediction perfor-
mance. Zheng et al. (2012a) presented a neighborhood-aware matrix
factorization method that integrates similar users identi�ed by histori-
cal QoS-based PCC into QoS prediction. He et al. (2017) proposed the
NeuMF model, which combines generalized matrix factorization with
multi-layer perceptron to form an integrated structure to predict missing
QoS. Zhu et al. (2017) put forward a hybrid QoS prediction method that
extends traditional matrix factorization by integrating user and service
deviations, latent factor modeling, online learning, and adaptive weight
mechanisms to improve prediction accuracy in dynamic cloud environ-
ments. Zhang et al. (2019) proposed a hybrid model LDCF that inte-
grates the multi-layer perceptron and collaborative �ltering similarity
mechanism, combining location similarity modeling with the nonlinear
feature extraction capability of deep learning to improve the prediction
performance of complex QoS data.
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2.2. Privacy-preserving QoS prediction methods

Despite advances in QoS prediction performance, growing network
technologies and the popularization of privacy policies have raised
awareness of personal data protection, thereby drawing scholarly at-
tention to privacy concerns in QoS prediction.

Badsha et al. (2018a) utilized homomorphic encryption to develop
a QoS prediction framework with a privacy protection function, which
achieves personalized Web service recommendations without leaking
privacy by encrypting historical QoS and location information. Badsha
et al. (2018b) also devised a privacy-preserving Web service recommen-
dation scheme based on homomorphic encryption, which enables QoS
prediction while preserving user privacy. However, due to its high com-
putational overhead, the scheme is primarily suitable for o�ine scenar-
ios. This type of solution focuses on the performance evaluation of ho-
momorphic encryption methods and rarely involves the research of QoS
prediction accuracy. In addition to homomorphic encryption, some stud-
ies have adopted di�erential privacy to achieve privacy protection. Liu
et al. (2019) presented a collaborative privacy protection framework for
QoS prediction. They adopted the Laplace mechanism to add noise for
protecting sensitive information and designed two methods: DPS, which
directly adds noise to user data, and DPA, which �rst aggregates the data
and then adds noise to improve data availability. Liu et al. (2020) in-
troduced a shared and collaborative Web service QoS prediction scheme
and developed a di�erential privacy framework that e�ectively prevents
privacy leakage while enabling data sharing and collaborative predic-
tion. To address privacy concerns in QoS prediction for mobile edge
computing, Zhang et al. (2020) proposed introducing Laplace noise into
the edge computing environment to achieve di�erential privacy and re-
duce the risk of user data leakage. However, this method involves a
trade-o� between privacy protection and prediction accuracy. Multiple
calculations require injecting more noise, which in turn degrades predic-
tion accuracy. Zhu et al. (2015) proposed a e�ective privacy-preserving
QoS prediction framework based on data obfuscation technology and
designed two classic methods: P-UIPCC and P-PMF. However, similar to
Laplace-based di�erential privacy, this type of method su�ers from the
issue that increased noise reduces prediction accuracy, and it remains
di�cult to determine an appropriate privacy budget to balance pri-
vacy protection with prediction performance. Moreover, Perifanis and
Efraimidis (2022) proposed a NeuMF architecture based on federated
learning, which e�ectively avoids the direct exposure of original user
data and can be applied to QoS prediction to achieve privacy protec-
tion. Unlike the above privacy protection schemes, our scheme adopts
an exponential mechanism to maximize the accuracy of the prediction
results while ensuring user privacy.

3. Preliminaries

In this section, we present the relevant basic knowledge, which in-
cludes Dirichlet distribution and di�erential privacy.

3.1. Dirichlet distribution

The Dirichlet distribution (Xu et al., 2019) is widely used to model
multidimensional probability vectors, especially as a prior in Bayesian
multinomial models. The Dirichlet distribution is commonly used to
model the probability distribution of X = {X1,X2,… ,XK}, which is a
K-dimensional random variable, where K represents the number of cat-
egories or outcomes. Next, we de�ne ✓ = {✓1, ✓2,… , ✓K} as a level vec-
tor, where ✓i À [0, 1] and ✓i < ✓i+1. Then, we use ôíp = {p1, p2,… , pK} to
express the probability distribution of X, where P {✓i*1 < Xi < ✓i} = pi
(1 f i f K). Suppose that ôí� = {�1, �2,… , �K} with �i > 0 and 1 < i < K.
So, X is said to be a Dirichlet distribution with parameters ôí�, which is
denoted by X Ì Dir(ôí�). Therefore, the probability density function of

the Dirichlet distribution is articulated as follows:

f (íp › í�) =
�
⇠

≥K
i=1 �i

⇡

ù±K
i=1 p

�i*1
i

±K
i=1 �

�

�i
�

, (1)

where �(�) denotes the Gamma function. Next, the expected value of the
Dirichlet distribution can be calculated using the following formula:

E(pi › í�) =
�i

≥K
i=1 �i

. (2)

3.2. Di�erential privacy

Di�erential privacy (Dwork et al., 2014; Li et al., 2016) is a tech-
nology that protects individual privacy in data analysis. It introduces
random noise to ensure that the addition or removal of any single data
has minimal impact on the analysis results, thereby e�ectively prevent-
ing the leakage of sensitive information.

De�nition 1 (✏-Di�erential Privacy Dwork et al., 2014). A random-
ized algorithm M satis�es ✏-di�erential privacy if for all neighboring
datasets X and X® di�ering by at most one element, and for any subset
of possible outputs S ” Range(M), the following inequality holds:

P [M(X) À S] f exp(✏) � P [M(X®) À S], (3)

where ✏ is the privacy parameter that quanti�es privacy protection and
is referred to as the privacy budget; the smaller the value of ✏, the
stronger the privacy.

Exponential mechanism (Li et al., 2016) is a di�erential privacy al-
gorithm that selects outputs through the probability distribution of a
quality function to achieve a balance between privacy protection and
result quality.

De�nition 2 (Exponential Mechanism Li et al., 2016). The exponential
mechanismME (x, q,S) selects an output r À S with probability propor-
tional to exp

⇠

✏,q(x,r)
2�q

⇡

, where q(x, r) is a quality function and �q is its
sensitivity, which is described as follows:

�q = max
rÀS max

x,x®:Òx*x®Òf1 Û

Û

q(x, r) * q(x®, r)Û
Û

, (4)

where x and x® are neighboring datasets di�ering in at most one element,
and r is a potential output.

4. Proposed method

4.1. Overview of the TEPP method

In this article, the proposed TEPP method comprises three compo-
nents: a) Trusted user-based prediction method; b) User preference-
based prediction method; and c) Trusted service-oriented prediction. We
assert that each of the aforementioned parts can predict the values of
those missing entries in the user-service matrix based on the values al-
ready present in the matrix. However, in this work, we predict the miss-
ing QoS values in the user-service matrix through an ultimate hybrid
prediction method, which combines the aforementioned three methods.
The overall �owchart of the proposed method is depicted in Fig. 1, and
detailed descriptions of each part will be provided in the following sec-
tions. It is important to note that, for coherent exposition in Section 4,
the bilateral trust model in the TEPP model will be discussed separately
in Section 5.

4.2. Trusted user-based prediction

4.2.1. Reputation value calculation
We intend to use the Dirichlet distribution model to calculate the

trustworthiness of users. Prior to determining a user’s trust value, eval-
uating the satisfaction derived from invoking a speci�c service is es-
sential. When assessing a user’s satisfaction with a speci�c service, a
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Fig. 1. Overall framework preview of TEPP. TEPP illustrates a hybrid QoS prediction framework embedded in a bilateral trust model based on evolutionary game
theory. Users invoke services and provide historical QoS feedback, enabling the system to perform predictions from three aspects: trusted user-based prediction, user
preference-based prediction, and trusted service-oriented QoS prediction. The upper module calculates the trust values between users to build a trusted user neighbor
set for prediction; the middle module performs collaborative �ltering prediction based on user expectations and preference similarity; the lower module calculates
the trust values between services through service reputation and similarity to establish a trusted service neighbor set for prediction. At the same time, the bilateral
trust model based on evolutionary game theory is embedded between users and service providers to motivate both parties to execute trust strategy behaviors. Finally,
an adaptive fusion model generates the �nal QoS prediction for the target user.

weighted average can comprehensively account for various QoS at-
tributes. Suppose there are k QoS attributes denoted as Q1,Q2,… ,Qk.
For each QoS attribute Qi, collect the user’s actual observation data for
this attribute, denoted as qi,j , where j denotes the jth invocation of the
service. Then, a weight is assigned to each QoS attribute, indicating its
importance in user satisfaction. The weight is usually a positive number
and the sum is 1, expressed as w1,w2,… ,wk. To standardize the obser-
vation data of each QoS attribute Qi, we use the Z-score normalization
method: zi,j = (qi,j * �i)_�i, where �i represents the average observed
value of QoS attributeQi: �i =

≥

jÀIi qij_Ii represents QoS indicator the

standard deviation of the observations ofQi: �i =
t

≥

jÀIi (qij * �i)2_Ii,
where Ii represents the set of Web services that have been invoked
by user i. Based on the standardized data and weights, calculate the
overall satisfaction score r: r = ≥k

i=1 wi � zi,j , where wi is the weight of
QoS attribute Qi, and zi,j is the standardized observation data. Based
on the comprehensive satisfaction score r, user satisfaction can be cat-
egorized. For instance, if r is relatively high, then user satisfaction is
high; otherwise, user satisfaction is low. In practical applications, to
better represent user satisfaction with a particular service, we can map
r to the interval [0, 1]. In this paper, we achieve this objective using
the commonly employed Sigmoid function. The Sigmoid function is as
follows:

S(r) = Sigmoid(r) = 1
1 + e*r

. (5)

In our TEPP method, we use the Dirichlet distribution to calcu-
late the reputation value of a user ui. Given a user ui, let X be the
discrete random variable de�ned as the satisfaction level of feedback
from user ui on the invoked service. we also denote levels of satis-
faction X as a set {X1,X2,… ,XK}(Xi À [0, 1], 1 f i f K ,Xi+1 > X). Let
ôíp = {p1, p2,… , pK}(

≥l
i=1 pi = 1) be the probability distribution vector of

X with respect to the levels of satisfaction values, and we have P {✓i*1 <
Xi < ✓i} = pi(1 f i f K). Then, we also let ôí� = {�1, �2,… , �K} denote the
vector of cumulative satisfaction value. With a posterior Dirichlet dis-
tribution, ôíp can be modeled as

Dir(íp › í�) =
�
⇠

≥K
i=1 �i

⇡

ù±K
i=1 p

�i*1
i

±K
i=1 �

�

�i
�

, (6)

where �0 =
≥K

i=1 �i. To calculate the reputation value of a ui, we assign
the weight value !i for every level ✓i. Let pi denote the probability that
the satisfaction value of u®is feedback is categorized into the level of ✓i,
where ôíp = {p1, p2,… , pK} and

≥K
i=1 pi = 1. Let Y be the random variable

denoting the weighted average of the probability of every satisfaction
level in ôíp , then the reputation value R(ui) of ui can be expressed as
follows:

R(ui) = E[Y ] =
K
…

i=1
!iE[pi] =

K
…

i=1
!i

�i
≥K

i=1 �i
= 1

�0

K
…

i=1
!i�i. (7)

4.2.2. Trusted neighbor selection
In this section, we aim to select a reliable set of neighbors during

prediction, which will be determined by combining the computed user
reputation values and the similarity between users. Building a trusted
neighbor set requires calculating trust values among users. This is be-
cause the trust between users can elucidate the extent to which feed-
back provided by a user after invoking a particular service can be well-
received and acknowledged by other users, stemming from the trust that
these users have in the user providing the feedback. In our method,
we quantify the consistency of the quality feedback provided by users
when jointly invoking certain services by computing the similarity be-
tween them. In this article, we utilize the Pearson correlation coe�-
cient (PCC) (Fkih, 2022; Wang et al., 2025) for computing the similarity
among users. The PCC is de�ned as follows:

sim
�

ui, uj
�

=
≥

aÀIi,j
�

ri,a * Ñri
��

rj,a * Ñrj
�

t

≥

aÀIi,j
�

ri,a* Ñri
�2�ri,a* Ñri

�2
, (8)

where Iij is the set of Web services invoked by both user ui and user uj ,
represented as Iij = Ii „ Ij . ri,a represents the QoS value of service sa as
observed by user ui. Ñri and Ñrj denote the average QoS values observed
by users ui and uj for various services, respectively. To achieve higher
accuracy, we have taken the help of an enhanced PCC method to intro-
duce it into QoS prediction to calculate the trust value. The calculation
method is as follows:

En_sim(ui, uj ) = sim(ui, uj ) ù s(ui, uj ), (9)
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where sim(ui, uj ) is the Pearson similarity between ui and uj , and s(ui, uj )
is a similarity weight factor. Speci�cally, s(ui, uj ) is de�ned as follows:

s(ui, uj ) = T (n)w(ui ,uj ), (10)

where T (n) = 1
ln(2+n) with T (n) À (0, 1), n represents the count of Ii,j , and

w(ui, uj ) =

y

x

x

w

≥

sÀIi,j ws(ris * Ñri)2
≥

sÀIi,j ws
, (11)

where ws = ln(1 + t
ns
), t is the total number of services, ns denotes the

total number of times service s has been invoked by all users. Subse-
quently, the trust value between users ui and uj is determined by taking
into account the calculated reputation values for each user, as well as
the similarity between them. The trust value is computed using the fol-
lowing formula:

Trust(ui, uj ) = 2 ù
En_sim(ui, uj ) ù R(ui)
En_sim(ui, uj ) + R(ui)

, (12)

where En_sim(ui, uj ) denotes the enhanced Pearson similarity between
users, and R(ui) denotes the reputation value of user ui. And Trust(ui, uj )
denotes the trust value between user ui and user uj computed from the
reputation value of user ui and the improved similarity of users ui and uj .
Indeed, it is evident from the equation that Trust(ui, uj ) ranges between
*1 and 1. This is attributed to the fact that R(ui) ranges between 0 and
1, and En_sim(ui, uj ) spans the interval [*1,1]. We further assert that a
larger value of Trust(ui, uj ) implies that uj is more trustworthy relative
to ui.

After computing trust values among users, the selection of the set
of trusted neighbors will be carried out. Prior to this, to ensure user
privacy, we will apply di�erential privacy in this process. To achieve
this goal, we initially perform privacy neighbor set selection using the
exponential mechanism. Given a set of users U , a user ui, and a subsetM ” U ‰ ui, the quality function measuring the suitability of M as the
neighbors of ui is de�ned as:

q(U , ui,M) =
…

ujÀM
Trust(ui, uj ), (13)

where U is the set of users in the Qos prediction system, Trust(ui, uj )
represents the reputation value between user ui and user uj . The quality
function, as de�ned in Eq. (13), is the sum of the absolute values of the
trust values. Based on the concept of the exponential mechanism, the
probability of the setM being the neighbor set is obtained as follows:

Pr(M) =
exp( ✏

2�q q(U , ui,M))
≥M®ÀU exp( ✏

2�q q(U , ui,M®))
, (14)

where �q represents the sensitivity of the quality function q, which is
given by:

�q = maxM max
U1 ,U2:ÒU1*U2Òf1

Û

Û

q(U1, u,M) * q(U2, u,M)Û
Û

= 1, (15)

where U1 and U2 represent any pair of adjacent user sets. Once the ran-
dom privacy neighbor set selection is completed, we proceed to select
the trusted neighbor set. Speci�cally, we can utilize the following equa-
tion to choose a set of reliable neighbors for user ui:

N(ui) = {uj uj À M,Trust(ui, uj ) g ✓, ui ë uj}, (16)

where M denotes the randomly selected privacy neighbor set obtained
using di�erential privacy technology, and ✓ represents the trust thresh-
old. Finally, the missing values in the Qos matrix are predicted by

Ru
ia = ri +

≥

ujÀN(ui) Trust(ui, uj )(rj,a * rj )
≥

ujÀN(ui) Trust(ui, uj )
, (17)

where Ru
ia is the predicted QoS value of service sa observed by user ui.

Ñri represents the average QoS values observed by user ui for various
services. Ñrj represents the average QoS values observed by trustworthy
neighbor user ua for di�erent services.

4.3. Trusted service-oriented prediction

In our above scheme, we utilized a user-based collaborative ap-
proach for QoS prediction. This method involved selecting a set of re-
liable users to constitute a trustworthy neighbor set for the target user.
Then, the values within this trusted neighbor set were utilized to predict
missing values in the user-services matrix for the target user. However,
this approach exhibits bias by neglecting predictions from the service
data perspective, resulting in slightly less accurate predictions. To en-
hance prediction accuracy, we propose a service-based QoS value pre-
diction method. Simultaneously, to consider the reputation of the ser-
vice provider, we indirectly represent the trustworthiness of the service
provider by calculating the trust value between di�erent services. To
calculate the reputation value between di�erent services, we �rst need
to give the user’s feedback score for the service. This is because the repu-
tation value represents the user’s inner feeling towards a certain service.
It can also be viewed as explicit feedback from users who have either
invoked the service in question or interacted with it in the past.

In our work, each invoked service will get a feedback rating provided
by users to re�ect their satisfaction level after interacting with the ser-
vice. Usually, we set this feedback rating as an integer between 1 and
r, and the larger the value, the higher the degree of satisfaction. Each
user will give a corresponding feedback rating to express their opinion
on the experience of the service. In addition, we introduce the concept
of R(sj ), which is used to represent the reputation of the service sj in
the whole calling process. This reputation value can comprehensively
consider the performance of the service among di�erent users, thereby
forming an indication of the overall trustworthiness of the service sj .

R(sj ) =
≥m

i=1 ri
m

, (18)

where ri represents the feedback score of i, and m represents the number
of feedback scores.

Trust among various services re�ects the high reputation values of
service providers, as these services consistently receive positive feed-
back upon user invocation. In our work, we favor the use of similarity
between di�erent services to indicate that the explicit feedback from the
user after an invocation of these services is similar. First, we employ the
following formula to determine the similarity between services.

sim(sa, sb) =
≥

uÀUR
ru,aru,b

t

≥

uÀUR
r2u,a

t

≥

uÀUR
r2u,b

, (19)

where UR = {uiui À M,R(ui) g ✓}. ri,a is the QoS value of service sa ob-
served by user ui. The trust value among distinct services can be com-
puted by amalgamating the similarity among the services and the repu-
tation value of one speci�c service, as outlined below:

T (sa, sb) = 2 ù
R(sa) ù sim(sa, sb)
1 + sim(sa, sb)

, (20)

where T (sa, sb) represents the trust value between services sa and sb.
R(sa) represents the reputation of service sa. sim(sa, sb) represents the
similarity between services sa and sb. Since R(sa) belongs to [0, 1], the
value range of the numerator will also be between [*1, 1]. Since the
value range of sim(sa, sb) belongs to [*1, 1], so sim(sa, sb) will also be
in the range of [0, 1]. Therefore, the denominator ranges from 1 to 2.
Therefore, the value range of the formula T (sa, sb) is *1 to 1. A higher
value indicates greater trustworthiness of the service providers. Upon
completion of trust value calculation for all services, a set of reliable
neighbors can be chosen for service sj .

S(j) = {stst À M(j), T (st, sj ) g ✓, st ë sj}, (21)

whereM(j) is a set of Top-S similar services to the service j. ✓ represents
the trust threshold. T (st, sj ) represents the trust value between services
st and sj . Then, the missing value in the QoS matrix based on service
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prediction is calculated as follows:

Rs
ij =

≥

sbÀS(j) ribTrust(sj , sb)
≥

sbÀS(j) Trust(sj , sb)
, (22)

where Trust(sj , sb) represents the trust value between services sj and sb.
rib signi�es the QoS value of service sb observed by user ui. S(j) denotes
the set of trustworthy neighbors of service sj .

4.4. User preference-based prediction

QoS prediction in the trusted user-based method involves selecting
a set of trustworthy neighbors for active users. However, this approach
fails to consider the actual preferences of users. Next, in this part, we
propose a method that relies on user preferences to predict QoS values.
The following details outline our approach: Initially, we calculate users’
preferences for di�erent services based on various QoS attributes. This
process includes taking into account the observed values of the service
on QoS attributes and the user’s expected values, allowing us to derive
the user’s preference value. The speci�c expression is as follows:

pi,j =
(1 * ⌘)ri,j + ⌘riei,j

ri
, (23)

where pi,j represents user ui’s preference for service j on QoS attribute
k. ri denotes the average QoS values observed by users ui for various
services. ri,j represents the QoS value of service sj as observed by user ui.
For the expected value ei,j , we calculate it using the following method. A
group of the Top-m most trustworthy users is identi�ed as the neighbor
set N(ui) of user u.

ei,j =
≥

uÀN(ui) ri,jsim(ui, u)
≥

uÀN(ui) sim(ui, u)
, (24)

where ei,j is user ui’s expectation value for service j on a certain QoS
attribute. N(ui) represents the most trustworthy neighbor set of user ui.
sim(ui, u) is the Pearson similarity between ui and u. Upon acquiring the
user’s preference values, we compute the similarity in preferences be-
tween users, a step crucial for predicting missing values later on. The
calculation of preference similarity is based on the preference values.
Therefore, we opt for Euclidean distance to calculate preference simi-
larity between users ui and uj , as illustrated below:

simpre(ui, uj ) =
1

1 +
t

≥

sÀS(j)(pui ,s * puj ,s)2
, (25)

where simpre(ui, uj ) represents the preference similarity between user ui
and user uj , pui ,s represents user ui the preference value of service s on
a speci�c QoS attribute, puj ,s represents the preference value of user uj
on a speci�c QoS attribute, S(j) represents the trustworthy neighbor set
for service sj by Eq. (21). Next, the missing QoS value prediction based
on user preferences is performed. The speci�c calculation method is as
follows:

Rp
ij = ri +

≥

uaÀN(ui) simpre(ui, ua)(raj * ra)
≥

uaÀN(ui) simpre(ui, ua)
, (26)

where N(ui) represents the set of user neighbors similar to user ui. By
following the aforementioned steps, a method grounded in user prefer-
ences can be utilized to calculate the QoS prediction value for a partic-
ular service. This will help make personalized service recommendations
and predict the user’s missing values for services based on the user’s
preference similarity.

4.5. Fusion QoS prediction for target users

In the initial part of this section, we pointed out that while the three
methods introduced earlier can all conduct QoS prediction, none of them
can attain a high level of prediction accuracy. Consequently, to achieve
optimal prediction performance for missing QoS values, we intend to

employ a fusion model that uni�es these three complementary meth-
ods. This constitutes the proposed TEPP prediction model, which fully
leverages the strengths of all three methods. Building upon the afore-
mentioned three fusion prediction methods, the proposed TEPP method
employs two parameters � and ⌫, to integrate these methods into a linear
fusion prediction model. The speci�c form of the fusion model is shown
in Eq. (27), which is designed to achieve superior prediction accuracy.

Rij = �Ru
ij + ⌫Rs

ij + (1 * � * ⌫)Rp
ij , (27)

where Rij denotes the �nal predicted QoS value. The parameters � and
⌫ indicate the relative contributions of the TEPP method to Ru

ij and Rs
ij ,

respectively, and the value range of the two parameters is 0 f � + ⌫ f 1.

4.6. Privacy analysis

In this part, we will theoretically prove that our proposed method
satis�es ✏-di�erential privacy in Theorem 1.

Theorem 1. The proposed TEPP satis�es ✏-di�erential privacy.
Proof. We iteratively construct candidate neighbor sets of size M

until all such sets within the target set have been generated. By aggre-
gating these candidate sets, we obtain the �nal neighbor set M. For any
two neighboring datasets U1 and U2 and anyM À M, we have

exp
⇠ "q

�

U1 ,u,M
�

2�q

⇡

exp
⇠ "q

�

U2 ,u,M
�

2�q

⇡

= exp
H

✏
�

q(U1, u,M) * q(U2, u,M)
�

2�q

I

f exp( ✏2 ).

Analogously, the following inequality also holds:

exp
H

"q
�

U2, u,M ®�

2�q

I

f exp( ✏2 ) � exp
H

"q
�

U1, u,M ®�

2�q

I

.

Based on the de�nition of the exponential mechanism, we evaluate the
probability ratio that outputM À M occurs on neighboring datasets U1
and U2. Speci�cally, we have:

Pr[M✏
q(U1) = M] =

exp( "q(U1 ,u,M)
2�q )

≥

M ®ÀM exp( "q(U1 ,u,M ®)
2�q )

and

Pr[M✏
q(U2) = M] =

exp( "q(U2 ,u,M)
2�q )

≥

M ®ÀM exp( "q(U2 ,u,M ®)
2�q )

.

Hence, the probability ratio is given by:
Pr[M✏

q(U1) = M]
Pr[M✏

q(U2) = M]

=
`

r

r

p

exp( "q(U1 ,u,M)
2�q )

exp( "q(U1 ,u,M)
2�q )

a

s

s

q

�
`

r

r

p

≥

M ®ÀM exp( "q(U1 ,u,M ®)
2�q )

≥

M ®ÀM exp( "q(U1 ,u,M ®)
2�q )

a

s

s

q

= exp
0

✏(q(U1, u,M) * q(U2, u,M))
2�q

1

�
`

r

r

p

≥

M ®ÀM exp( "q(U2 ,u,M ®)
2�q )

≥

M ®ÀM exp( "q(U1 ,u,M ®)
2�q )

a

s

s

q

f exp( ✏2 ) �
`

r

r

p

≥

M ®ÀM exp( ✏2 ) exp(
"q(U1 ,u,M ®)

2�q )
≥

M ®ÀM exp( "q(U1 ,u,M ®)
2�q )

a

s

s

q

f exp( ✏2 ) � exp(
✏
2 ) �

`

r

r

p

≥

M ®ÀM exp( "q(U1 ,u,M ®)
2�q )

≥

M ®ÀM exp( "q(U1 ,u,M ®)
2�q )

a

s

s

q

= exp(✏).

Therefore, we demonstrate that the TEPP scheme adheres to ✏-
di�erential privacy. It is noteworthy that within the three components
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of the fusion model, the exponential mechanism is exclusively employed
during the trusted neighbor selection phase of the trust-based user QoS
prediction method. Additionally, the latter two methods solely rely on
the output outcomes of the initial one. Consequently, considering the
post-processing features inherent in di�erential privacy, TEPP indeed
meets the criteria for di�erential privacy.

5. Bilateral trust model based on evolutionary game theory

The bilateral trust model primarily aims to tackle two aspects of trust
in Web service recommendation systems: user trust in the platform or
service provider and the service provider’s trust in the user. This sec-
tion concentrates on exploring bilateral trust issues using evolutionary
game theory. In general, trust-based evolutionary game theory models
encourage both parties to continuously adjust their strategies by explor-
ing each other’s trust values in the service recommendation. Therefore,
by establishing a bilateral trust model, it is possible to analyze and con-
strain the trust behaviors of both parties during the prediction process
of recommendation services.

(1) Model and payo� matrix: In this part, we de�ne the bilateral
trust evolutionary game model based on reputation as a 4-tuple G =
{P ,G, T ,N}, where

• P : The participants in the trust game (including users and service
providers) under the bilateral trust model in the web service rec-
ommendation process can dynamically decide whether to engage in
trust behavior. Assume that the two parties participating in the game
are user U and service provider S, respectively.

• G: A collection of relevant trust behavior participants.
• T : The behavioral strategy space fromwhich both parties in the game
can select T = {t1, t2} = {Trust,Mistrust}.

• N : The payo� matrix is obtained from the trust game between the
participating parties, as illustrated in Table 1.

It is obvious from the bene�t matrix that the strategies that both
parties can choose under this model are trust or mistrust. Therefore, the
game process between the two parties essentially follows a “two-party
symmetric game.” To analyze the evolutionary game process in detail,
Ui and Si represent the two parties in the game; Bi is employed to cal-
culate the bene�ts of U or S respectively. The speci�c calculation is as
follows:

Bi = ⇣1ln(1 + Ti) + ⇣2Mi (28)

where ⇣1 + ⇣2 = 1, Mi represents user or service provider satisfaction,
signifying either the user’s satisfaction with the service or the service
provider’s satisfaction with the user. Ti can be calculated based on Tu and
Ts, which can be calculated based on Eqs. (12) and (20), respectively.

In the Web service recommendation process, the willingness of users
or service providers to engage in trusting behaviors is in�uenced by var-
ious factors, including user preferences, time, and the associated costs.
For this purpose, we introduce a dynamic coe�cient denoted as i. If
fewer participants engage in trust behaviors, we set i greater than 1
to encourage active participation in the trust game by users or service
providers; otherwise, we can set 0 <  < 1 to prevent malicious partici-
pants from destroying the entire game system.

In addition, the goal of this model is to encourage more users and
service providers to honestly participate in the recommendation service
process. When both parties initially participate, even if they have a good

Table 1
Payo� matrix.

The Strategy of the User The Strategy of the Service Provider

Trust Mistrust

Trust uBu + Au * Cu, sBs + As * Cs Bu + Au * Cu, 0
Mistrust 0, Bs + As * Cs 0, 0

reputation but are forced to be unpro�table, in situations like this the
participants may be inclined not to participate or to linger. Therefore,
to encourage more users or service providers to participate, the model
will be set up so that when there are fewer participants, part of the
rewards will be given to those participating in the bilateral trust. This
dynamic income from rewards is represented by A. Participants in the
bilateral trust model need to pay a certain price to gain the trust of the
other party. These costs include the time cost of calculating your own
reputation value information and the cost of leaking your own private
information, etc. We record this cost consumed in the process of par-
ticipating in the game as C. Naturally, if one chooses to behave in a
distrustful manner, there is neither a cost nor a corresponding reward.

(2) Dynamic equation: Assuming that all behavioral participants in
this model system constitute a group G, and each participant’s probabil-
ity of choosing a trusting behavior strategy is denoted as p, where p is
a function concerning time t and p À [0, 1]. In contrast, the probability
of a participant choosing a mistrusting behavior is 1 * p. Utilizing the
payo� matrix presented in Table 1 and guided by the principles of evo-
lutionary game theory (Phelps & Wooldridge, 2013), one can derive the
expected bene�ts of whether the user or service provider chooses trust
behavior can be obtained by the following formulas:

E(t1, p) = p(iBi + Ai * Ci) + (1 * p)(Bi + Ai * Ci), (29)

and

E(t2, p) = 0, (30)

respectively. Therefore, the average revenue of users or service
providers can be calculated as follows:

E = pE(t1, p) + (1 * p)E(t2, p)
= p[p(iBi + Ai * Ci) + (1 * p)(Bi + Ai * Ci)].

(31)

Hence, the growth rate of the trust strategy can be expressed by the
replication dynamic equation of the participants in the trust game, as
illustrated below:

Fi(p) =
dp
dt

= p[E(t1, p) * E]. (32)

Let Fi(p) = 0. Then, we can get three steady-state points that the repli-
cation dynamic equation, which are p1 = 0, p2 = 1, and p3 =

Ci*Bi*Ai
(i*1)Bi

,
respectively.

(3) Dynamic and steady state analysis: The evolutionary stable
strategy (ESS) theory emphasizes that the stable state of the dynamic
system should persist stable in the face of minor disturbances. In short,
if a certain point p is de�ned as an evolutionary equilibrium point (EEP),
then the derivative of the corresponding evolutionary strategy Fi(p)
must satisfy F ®

i (p) < 0. Based on this theory, we can infer the evolu-
tionary strategy (ES) selected by the participants by analyzing the three
stable points in di�erent situations. See Table 2 for details.

Then, we can analyze the steady state strategies and dynamic strate-
gies included in the trust game through Table 2. The speci�c classi�-
cation statistics are in Table 3. However, factors that in�uence evolu-
tionary trends cover participation costs, dynamic coe�cient, and the
initial proportion of users or service providers performing trusting be-
haviors in QoS predictions. With other parameters held constant, the
dynamic coe�cient is a key factor in increasing the proportion of par-
ticipants taking trusting actions. According to Table 2, the steady state
result remains constant in the game outcomes, una�ected by parame-
ter changes. Therefore, We mainly analyze the following �ve dynamic
strategies: II-(2), III-(2), VI, VIII-(1), and IX-(1). In dynamic strategies II-
(2) and III-(2), since the EEP is not a certain value, we set p3 =

Ci*Bi*Ai
(i*1)Bi

tends to 1, that is, when i tends to
Ci*Ai
Bi

, users or service providers are
more willing to perform trusting behaviors.

However, for the other three remaining dynamic strategies, we can
get the value range of the dynamic coe�cient i for participants to per-
form trusting behaviors as follows:
Ci * Bi * Ai
(i * 1)Bi

< p<, (33)
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Table 2
Analysis and classi�cation of evolutionary stable strategies.

Range of i Strategy No. Range of parameters Evolutionary strategy analysis

0<i<1

Strategy I Bi + Ai > Bi > iBi > Ci F ®(p1) > 0, F ®(p2) < 0, p3 > 1 does not exit EEP: p2; ES:
engaging the action of trust

Strategy II (1) Bi + Ai > Bi > Ci > iBi
iBi + Ai > Ci F ®(p1) > 0, F ®(p2) < 0, F ®(p3) > 0 EEP: p2; ES: engaging the

action of trust

(2) iBi + Ai < Ci F ®(p1) > 0, F ®(p2) > 0, F ®(p3) < 0 EEP: p3; ES: p3 the ratio of
players choosing trust action

Strategy III (1) Bi + Ai > Ci > Bi > iBi
iBi + Ai > Ci F ®(p1) > 0, F ®(p2) < 0, F ®(p3) > 0 EEP: p2; ES: engaging the

action of trust

(2) iBi + Ai < Ci F ®(p1) > 0, F ®(p2) > 0, F ®(p3) < 0 EEP: p3; ES: p3 the ratio of
players choosing trust action

Strategy IV Ci > Bi + Ai > Bi > iBi F ®(p1) < 0, F ®(p2) > 0, p3 < 0 does not exit EEP: p1; ES: not
engaging the action of trust

i > 1

Strategy V

(1) iBi > Bi + Ai > Bi > Ci
F ®(p1) > 0, F ®(p2) < 0, p3 < 0 does not exit EEP: p2;

ES: engaging the action of trust(2) Bi + Ai > iBi > Bi > Ci

(3) Bi + Ai > iBi > Ci > Bi

(4) iBi > Bi + Ai > Ci > Bi

Strategy VI iBi > Ci > Bi + Ai > Bi F ®(p1) < 0, F ®(p2) < 0, F ®(p3) > 0 EEP: p1,p2; ES: pi À (0, p3) not
engaging the action of trust pi À (p3 , 1) engaging the action of
trust

Strategy VII (1) Bi + Ai > Ci > iBi > Bi
iBi + Ai > Ci F ®(p1) > 0, F ®(p2) < 0, p3 < 0 does not exit EEP: p2; ES:

engaging the action of trust

(2) iBi + Ai < Ci F ®(p1) > 0, F ®(p2) > 0, F ®(p3) > 0 EEP: No;

Strategy VIII (1) Ci > Bi + Ai > iBi > Bi
iBi + Ai > Ci F ®(p1) < 0, F ®(p2) < 0, F ®(p3) > 0 EEP: p1,p2; ES: pi À (0, p3) not

engaging the action of trust pi À (p3 , 1) engaging the action of
trust

(2) iBi + Ai < Ci F ®(p1) < 0, F ®(p2) > 0, p3 > 1 does not exit EEP: p1; ES: not
engaging the action of trust

Strategy IX (1) Ci > iBi > Bi + Ai > Bi
iBi + Ai > Ci F ®(p1) < 0, F ®(p2) < 0, F ®(p3) > 0 EEP: p1,p2; ES: pi À (0, p3) not

engaging the action of trust pi À (p3 , 1) engaging the action of
trust

(2) iBi + Ai < Ci F ®(p1) < 0, F ®(p2) > 0, p3 > 1 does not exit EEP: p1; ES: not
engaging the action of trust

Table 3
Evolutionary state classi�cation from Table 2.

State Strategies

Steady I, II-(1), III-(1), IV, V, VII-(1), VIII-(2), IX-(2)
Dynamic II-(2), III-(2), VI, VIII-(1), IX-(1)

where p< represents the initial proportion of participants who perform
trusting behavior. By transforming the above formula, the value range
of i can be obtained: i >

Ci*Bi*Ai
p<Bi

+ 1. It can be seen that in dynamic
strategies VI, VIII-(1), and IX-(1), we can use the lower limit of i to en-
sure that participants perform trusting behaviors under smaller rewards.
To be more speci�c, we set i as follows:

i =
Ci * Bi * Ai

p<Bi
+ 2

=
Ci * [⇣1ln(1 + Ti) + ⇣2Mi] * Ai

p<[⇣1ln(1 + Ti) + ⇣2Mi]
+ 2.

(34)

Therefore, the relationship between i, the trust value of the partici-
pants,Mi, and the initial proportion of participants engaging in trusting
behaviors is dynamic. At the same time, given the above analysis, to en-
courage users and service providers to perform trusting behaviors in the
trust game, the following strategy can be adopted: when the proportion
of participants who initially perform trusting behaviors is lower than
p3, the system can continuously increase the reward income Ai to in-
crease the participant ratio. Here, the interval lower bound of Ai can be

obtained by transforming Eq. (33): Ai > Ci * [(i * 1)p< + 1]Bi, to �t the
actual situation, we always hope that the reward with the least expen-
diture will urge participants to actively perform trusting behaviors in
the trust game model, so we set the reward value to the lowest e�ective
value of the interval: Ai = Ci * [(i * 1)p< + 1][⇣1 ln(1 + Ti) + ⇣2Mi] + 1.
It is essential to note that the values provided strive to closely re�ect the
actual situation, and the extent of increase is in�uenced by numerous
factors. Moreover, if the participant ratio surpasses p3, there is no ne-
cessity to introduce extra rewards at this time. At this point, the system
can reach the maximum participation ratio.

6. Experiment

6.1. Data description and experimental setup

The dataset used in our experiment comes from the public WS-
DREAM1 database published by Zheng and Lyu (2010), Zheng et al.
(2011), which is the most widely used standard dataset in the �eld of
QoS prediction research and has excellent representativeness and versa-
tility. We selected two datasets from the WS-DREAM database, namely
Dataset#1 (D1) and Dataset#2 (D2), for model performance evaluation
and comparative experiments.

To verify the performance of our proposed TEPP model in QoS pre-
diction tasks, we �rst conducted a systematic experiment on the widely

1 https://inpluslab.com/wsdream/
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used D2 dataset. This dataset contains two QoS attributes: response time
(RT) and throughput (TP), covering invocation records from 339 users
to 5825 Web services, totaling 1,974,675 historical QoS data. The D2
dataset exhibits high sparsity and better simulates the complex ser-
vice invocation environments encountered in real-world scenarios. It
has been widely used in existing studies and serves as a representative
dataset for validating QoS prediction schemes.

To further evaluate the generalization and scalability of the TEPP
model under di�erent data scales and distribution conditions, we con-
ducted experiments on datasets D1 and a subset of D2 (referred to as D2-
Sub-RT). D1 contains 150 user invocation records for 100 Web services,
a total of 150 �les, each �le corresponds to the test results of a user
node, and records 10,000 invocations of the node to all 100 services.
Each record includes attributes such as Client IP, service ID, RT, etc.,
with a total of more than 1.5 million data records. Due to the large RT
values in the D1 dataset, we utilized the z-score standardization method
for normalization. D2-Sub-RT is a sequentially selected subset of the RT
dataset from D2, containing 120 users and 5000 services, covering a
total of 600,000 historical QoS data, to simulate a real-world scenario
that is muchmore sparse and where the size of the service is signi�cantly
larger than the number of users.

In addition, considering the highly sparse nature of user-service invo-
cation data in practical applications, this paper systematically evaluates
the model’s QoS prediction performance across �ve di�erent extremely
low data densities (0.1%, 0.2%, 0.3%, 0.4%, and 0.5%). Under each
density setting, the training set consists of a corresponding proportion
of QoS samples, and the remaining data is used as a test set to fairly
compare the performance of various methods in a sparse data envi-
ronment. The speci�c experimental parameter settings are as follows:
✓ = 0.5, m = 30, S = 50, ✏ = 1 for TEPP.

All comparative experiments in this study were conducted on a stan-
dalone machine running Python 3.8 within the PyCharm IDE. The sys-
tem was powered by an Intel Core i5-11400F CPU at 2.60GHz, equipped
with 32 GB of memory, and an NVIDIA GeForce RTX 3080 Ti GPU.

6.2. Evaluation metrics

To evaluate the predictive performance of TEPP against other ap-
proaches, three common accuracy metrics are employed to assess the
deviation between the actual and predicted values on the test set. The
two evaluation metrics formulas are described as follows: mean absolute
error (MAE) and root mean square error (RMSE). MAE is de�ned as

MAE =
≥N

i=1 qu,s * qu,s
N

, (35)

RMSE is de�ned as

RMSE =

v

≥N
i=1(qu,s * qu,s)2

N
, (36)

where qu,s and qu,s represent true value and the predicted value of user
u invoking service s, respectively. N denotes the number of predicted
QoS values.

6.3. Compared methods

To assess the e�ectiveness of TEPP, we carried out a series of com-
parative experiments involving fourteen diverse competing approaches,
which are presented below. In general, these methods cover traditional
collaborative �ltering approaches such as UMEAN (Sarwar et al., 2001),
UPCC (Shao et al., 2007), UIPCC (Zheng et al., 2011), and NRCF (Sun
et al., 2012); matrix factorization techniques including PMF (Salakhut-
dinov & Mnih, 2007), NIMF (Zheng et al., 2012a), and AMF (Zhu et al.,
2017); deep learning-based models such as NeuMF (He et al., 2017),
LDCF (Zhang et al., 2019), and BGCL (Zhu et al., 2023); as well as a
variety of privacy-preserving methods including P-UIPCC (Zhu et al.,

2015), P-PMF (Zhu et al., 2015), Lap-UCF (Zhang et al., 2020), and Fed-
NeuMF (Perifanis & Efraimidis, 2022); Some hybrid approaches, such as
UIPCC, AMF, NeuMF, and LDCF, are also incorporated, thereby provid-
ing a comprehensive and balanced basis for comparison.

• UMEAN (Sarwar et al., 2001): This scheme predicts empty QoS val-
ues by averaging the existing QoS of the target user.

• UPCC (Shao et al., 2007): This method identi�es similar users us-
ing PCC and predicts missing QoS values based on their past service
interactions information.

• UIPCC (Zheng et al., 2011): This method is a hybrid collaborative
�ltering scheme that combines users and items, and introduces con�-
dence weight linear fusion to achieve QoS prediction for target users.

• NIMF (Zheng et al., 2012a): This approach integrates neighborhood-
based similarity information into the matrix factorization frame-
work, aiming to improve QoS prediction accuracy by jointly mod-
eling global latent factors and local neighbor in�uences.

• NeuMF (He et al., 2017): This approach entails an advanced neu-
ral collaborative �ltering technique that integrates multi-layer per-
ceptrons with generalized matrix factorization within recommender
systems.

• NRCF (Sun et al., 2012): This approach focuses on personalized web
service recommendation by leveraging a re�ned collaborative �lter-
ing framework, where a new similarity measure is proposed to im-
prove the precision of user and service matching.

• PMF (Salakhutdinov & Mnih, 2007): This method mainly uses prob-
abilistic matrix factorization to optimize the traditional matrix fac-
torization scheme to predict QoS values.

• AMF (Zhu et al., 2017): This approach is a hybrid QoS prediction
method that integrates auxiliary information matrix and traditional
matrix factorization technology, aiming to improve the prediction
accuracy under sparse data conditions.

• LDCF (Zhang et al., 2019): This method combines the location simi-
larity modeling in traditional collaborative �ltering with the advan-
tages of deep learning in capturing nonlinear features for QoS pre-
diction.

• P-PMF (Zhu et al., 2015): This method embeds the di�erential pri-
vacy mechanism into the probabilistic matrix factorization (PMF)
model and achieves privacy protection by perturbing the QoS data
uploaded by users.

• P-UIPCC (Zhu et al., 2015): This method adds noise disturbance to
the original QoS data based on the traditional weighted user-item
collaborative �ltering method to achieve QoS prediction while pro-
tecting user privacy.

• Lap-UCF (Zhang et al., 2020): This method combines the Laplace
mechanism with the idea of user-based collaborative �ltering, aim-
ing to achieve QoS prediction in mobile edge environments while
e�ectively protecting data privacy.

• FedNeuMF (Perifanis & Efraimidis, 2022): This approach is a hybrid
QoS prediction method that integrates neural matrix factorization
with federated learning, balancing nonlinear feature modeling and
user data privacy.

• BGCL (Zhu et al., 2023): This approach is a QoS prediction frame-
work for Web services using graph contrastive learning.

6.4. Sensitivity analysis of the parameters

In our fusion model, we de�ne two parameters � and ⌫. The parame-
ters � and ⌫ re�ect the relative importance of our proposed TEPPmethod
to Ru

ij and Rs
ij , respectively. In this section, to investigate the impact of

these two parameters on the prediction performance of our scheme, we
conducted experiments with the parameters varying from 0 to 1 on the
D2 dataset. The results are depicted in Fig. 2, which illustrates the com-
parative performance of RT and TP under di�erent values of parameters
� and ⌫. As can be seen in Fig. 2, user preferences play a role in achieving
performance. Speci�cally, for RT, the optimal settings of parameters �

9
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Fig. 2. Parameter sensitivity analysis of � and ⌫ of TEPP under di�erent data types.

and ⌫ are � = 0.3 and ⌫ = 0.1, and for TP, the optimal settings are � = 0.1
and ⌫ = 0.6. Meanwhile, it can be observed from the �gure that the val-
ues at the image edges are larger, which occurs when � = 0, ⌫ = 0, or
� + ⌫ = 1. This scenario indicates that the impact of one of the solutions
is lost in the fusion model, leading to poor prediction performance. This
also indicates that the fusion model achieves the best prediction per-
formance, and the three schemes are interdependent. Therefore, in the
subsequent comparison experiments and ablation experiments, we set
� = 0.3 and ⌫ = 0.1 for RT, and � = 0.1 and ⌫ = 0.6 for TP.

6.5. Experimental result and analysis

To assess the performance of our proposed TEPP, we conduct two
parts of experiments, including comparisons with state-of-the-art solu-
tions on three datasets and ablation experiments on the D2 dataset. The
speci�c experiments and analysis are discussed as follows.

6.5.1. Comparative experiments and analysis
In the comparative experiments, historical QoS records were divided

into �ve di�erent densities, including 0.1%, 0.2%, 0.3%, 0.4%, and

0.5%, respectively. All comparative experiments were evaluated on the
same dataset or a consistent subset to ensure the consistency of the com-
parative experiments, and the performance of QoS prediction was eval-
uated on the test set using MAE and RMSE metrics. To maintain fairness
in evaluating prediction performance, we executed TEPP multiple times
and reported the average results.

To validate the prediction performance of TEPP, we �rst conducted
comparative experiments with advanced solutions on the widely used
D2 dataset. Tables 4 and 5 show the MAE and RMSE results of each
solution for response time (RT) and throughput (TP) prediction on this
dataset, respectively. In the QoS prediction task, the smaller the values
of MAE and RMSE, the better the prediction performance of the model.
It can be clearly seen from the experimental results that TEPP is sig-
ni�cantly better than the existing competing methods in both RT and
TP. UMEAN performs poorly because it only uses historical averages as
prediction results and lacks modeling of user behavior or service charac-
teristics. UPCC and UIPCC use collaborative �ltering methods, based on
user neighborhoods or user-service dual neighborhoods, respectively, to
signi�cantly improve prediction accuracy. PMF, as a basic matrix fac-
torization method, has signi�cantly improved prediction performance

10
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Table 4
Performance comparison of di�erent QoS prediction methods for Response Time on the D2 dataset.

Method Density=0.1% Density=0.2% Density=0.3% Density=0.4% Density=0.5%

MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE

UMEAN 0.9857 2.0803 0.9389 1.9355 0.9072 1.9065 0.8968 1.8899 0.8961 1.8890
UPCC 0.9663 2.0585 0.9480 1.9422 0.9038 1.9049 0.9035 1.8925 0.8853 1.8896
UIPCC 0.9081 2.1952 0.8942 2.1330 0.8841 2.0630 0.8883 1.9754 0.8850 1.8868
AMF 0.9555 1.9678 0.7999 1.8228 0.7336 1.7804 0.6994 1.7601 0.6798 1.7545
PMF 0.9044 2.1392 0.8932 2.1150 0.8887 2.1053 0.8813 2.0880 0.8777 2.0826
NRCF 0.8884 1.8333 0.8448 1.7287 0.8342 1.7139 0.8291 1.7046 0.8266 1.7023
NIMF 0.8809 2.0826 0.8754 2.0765 0.8564 2.0417 0.8807 2.0868 0.8775 2.0635
NeuMF 0.7295 2.0097 0.7139 1.9954 0.6991 1.9778 0.6961 1.9622 0.6876 1.9577
LDCF 0.8500 2.1003 0.8392 2.3665 0.7595 2.0402 0.7436 1.9724 0.7283 1.9158
BGCL 0.7386 1.8429 0.7016 1.7783 0.6864 1.7506 0.6664 1.7355 0.6481 1.7071
TEPP 0.6660 1.7211 0.6426 1.6855 0.6307 1.6808 0.6273 1.6799 0.6126 1.6665

Gains 8.70% 6.12% 8.41% 2.50% 8.11% 1.93% 5.87% 1.45% 5.48% 2.10%

P-UIPCC 0.9685 2.0052 0.9191 1.8697 0.9016 1.8400 0.8939 1.8362 0.8887 1.8372
P-PMF 0.9420 1.9676 0.9060 1.8486 0.8967 1.8298 0.8716 1.8248 0.8647 1.8192
Lap-UCF 0.9853 1.9487 0.9108 1.8385 0.8824 1.7975 0.8576 1.7792 0.8439 1.7699
FedNeuMF 0.7391 2.0506 0.7241 2.0256 0.7156 2.0112 0.7048 1.9893 0.6976 1.9889
TEPP-✏ 0.6709 1.7273 0.6522 1.7245 0.6411 1.7014 0.6319 1.6995 0.6236 1.6845

Gains 3.41% 11.07% 3.60% 5.70% 3.73% 4.81% 3.65% 3.98% 3.70% 4.27%

Table 5
Performance comparison of di�erent QoS prediction methods for Throughput on the D2 dataset.

Method Density=0.1% Density=0.2% Density=0.3% Density=0.4% Density=0.5%

MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE

UMEAN 60.6658 121.6744 58.3526 115.8634 55.3294 112.8759 55.8713 112.9005 56.5893 112.7764
UPCC 59.9779 119.8487 55.0104 114.8311 57.2795 113.8211 55.6456 112.7617 54.6639 112.6271
UIPCC 44.0289 113.5931 42.1972 108.7312 45.4457 106.5104 49.1318 108.1776 46.6078 108.8799
AMF 55.4219 116.2986 45.0937 109.2138 40.0813 99.3292 36.3137 92.9208 35.0542 92.7732
PMF 44.7542 111.3134 43.5078 107.6883 43.0480 107.6804 42.4471 106.6799 41.0839 104.5442
NRCF 54.8712 113.1567 53.8894 105.0316 52.4532 103.5014 52.0518 103.3833 52.1825 103.2707
NIMF 44.6099 110.9525 43.4722 108.5021 42.2466 105.8949 37.9826 97.4636 33.4272 90.5786
NeuMF 46.6071 120.1839 46.6044 120.1765 46.6050 120.1794 46.6069 120.1869 46.6085 120.1939
LDCF 43.1368 109.5748 42.7886 126.9160 41.4971 120.7278 40.1637 119.9376 38.5090 110.6470
BGCL 42.7198 110.7409 40.2451 105.2465 37.0181 100.9784 35.3380 95.8046 33.9775 90.6157
TEPP 40.3329 109.4105 37.5284 103.4707 35.1827 98.1631 33.3114 92.7275 32.2278 88.5879

Gains 5.59% 0.15% 6.75% 1.49% 4.96% 1.17% 5.73% 0.21% 3.59% 2.20%

P-UIPCC 58.7016 115.1683 56.5857 107.4806 55.4931 106.4743 53.2805 105.1682 52.5451 104.8075
P-PMF 55.6928 114.3494 53.3948 106.4904 52.2641 103.0886 51.1084 102.9215 50.3421 102.4846
Lap-UCF 58.1432 113.5873 55.6329 107.8394 54.9785 107.2318 54.5623 106.9171 54.2909 106.9086
FedNeuMF 46.6075 120.1872 46.6046 120.1793 46.6039 120.1801 46.6050 120.1858 46.6078 120.2011
TEPP-✏ 41.8204 113.1787 39.0398 107.1405 37.2299 102.2525 36.8553 101.8990 34.7639 95.1550

Gains 10.27% 0.36% 16.23% *0.61% 20.11% 0.81% 20.92% 0.99% 25.41% 7.15%

Table 6
Performance comparison of di�erent QoS prediction methods on the D2-Sub-RT dataset.

Method Density=0.1% Density=0.2% Density=0.3% Density=0.4% Density=0.5%

MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE

UMEAN 0.9641 2.0006 0.9144 1.8680 0.8987 1.8433 0.8911 1.8334 0.8886 1.8346
UPCC 0.9213 1.9125 0.9183 1.8923 0.8854 1.8159 0.8748 1.8407 0.8566 1.8258
UIPCC 0.8062 1.9607 0.7957 1.9178 0.7899 1.8864 0.7805 1.8486 0.7734 1.8188
AMF 0.8802 1.8729 0.7342 1.7443 0.6534 1.6780 0.6295 1.6932 0.6116 1.6959
PMF 0.7699 1.8770 0.7431 1.8378 0.7306 1.7849 0.7283 1.7785 0.7224 1.7698
NRCF 0.7304 1.6227 0.6959 1.5480 0.6848 1.5213 0.6787 1.5089 0.6606 1.4829
NIMF 0.7311 1.8602 0.7213 1.8495 0.7086 1.8212 0.7498 1.8987 0.7236 1.8613
NeuMF 0.6261 1.8752 0.6105 1.8712 0.6060 1.8670 0.6036 1.8439 0.5934 1.8405
LDCF 0.5534 1.5143 0.5320 1.4703 0.5207 1.4894 0.5143 1.4664 0.5054 1.4664
BGCL 0.5971 1.8690 0.5942 1.8645 0.5931 1.8476 0.5889 1.8428 0.5812 1.7615
TEPP 0.5446 1.5091 0.4685 1.4318 0.4550 1.4026 0.4491 1.3959 0.4457 1.3875

Gains 1.59% 0.34% 11.94% 2.62% 12.62% 5.83% 12.68% 4.81% 11.81% 5.38%

P-UIPCC 0.8759 1.9197 0.8327 1.8074 0.8032 1.7517 0.8087 1.7674 0.8068 1.7720
P-PMF 0.8615 1.9016 0.8097 1.7757 0.7745 1.7108 0.7754 1.7176 0.7692 1.7134
Lap-UCF 0.9065 1.6729 0.8997 1.5551 0.8801 1.5239 0.8791 1.5161 0.8696 1.4928
FedNeuMF 0.6347 1.9026 0.6333 1.9075 0.6321 1.9091 0.6319 1.9070 0.6317 1.9063
TEPP-✏ 0.5466 1.5110 0.4717 1.4434 0.4579 1.4146 0.4538 1.4141 0.4503 1.3912

Gains 13.88% 9.68% 25.52% 7.18% 27.56% 7.17% 28.18% 6.73% 28.72% 6.81%
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Table 7
Performance comparison of di�erent QoS prediction methods on the D1 dataset.

Method Density=0.1% Density=0.2% Density=0.3% Density=0.4% Density=0.5%

MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE

UMEAN 0.5667 1.2058 0.5626 1.1921 0.5623 1.1841 0.5602 1.1727 0.5591 1.1640
UPCC 0.5376 1.1407 0.5334 1.1289 0.5333 1.1221 0.5317 1.1126 0.5311 1.1058
UIPCC 0.4887 1.0885 0.4852 1.0771 0.4831 1.0677 0.4818 1.0600 0.4812 1.0530
AMF 0.3908 0.9063 0.3410 0.8504 0.3254 0.8374 0.3181 0.8322 0.3143 0.8300
PMF 0.3434 0.8864 0.3427 0.8835 0.3423 0.8808 0.3419 0.8788 0.3416 0.8770
NRCF 0.4077 0.8525 0.4026 0.8426 0.3982 0.8383 0.3979 0.8380 0.3973 0.8372
NIMF 0.3465 0.8949 0.3451 0.8921 0.3445 0.8905 0.3440 0.8893 0.3437 0.8887
NeuMF 0.3445 0.8906 0.2973 0.8565 0.3010 0.8506 0.2985 0.8538 0.2956 0.8500
LDCF 0.4340 1.2784 0.4305 1.2631 0.4320 1.2288 0.4311 1.1402 0.4257 1.0258
BGCL 0.4113 1.2239 0.4107 1.2231 0.4091 1.2100 0.4089 1.2015 0.4076 1.1950
TEPP 0.3008 0.8399 0.2934 0.8378 0.2928 0.8222 0.2922 0.8215 0.2902 0.8176

Gains 12.41% 1.48% 1.31% 0.57% 2.72% 1.82% 2.11% 1.29% 1.83% 1.49%

P-UIPCC 0.5317 1.1371 0.5309 1.1301 0.5257 1.1151 0.5213 1.1025 0.5198 1.0941
P-PMF 0.3767 0.9065 0.3657 0.8864 0.3616 0.8805 0.3593 0.8772 0.3584 0.8753
Lap-UCF 0.4503 0.8793 0.4362 0.8586 0.4307 0.8523 0.4292 0.8513 0.4283 0.8497
FedNeuMF 0.3527 0.9057 0.3030 0.8706 0.3026 0.8657 0.2989 0.8587 0.2980 0.8565
TEPP-✏ 0.3057 0.8407 0.2983 0.8392 0.2972 0.8353 0.2942 0.8266 0.2930 0.8231

Gains 13.33% 4.39% 1.55% 2.26% 1.78% 1.99% 1.57% 2.90% 1.68% 3.13%

compared to collaborative �ltering methods. AMF enhances online pre-
diction capabilities by introducing an adaptive mechanism, but its per-
formance degrades when the matrix density is 0.1%, mainly a�ected by
the extremely sparse data. NRCF uses an enhanced neighborhood model
and a novel similarity calculation method to make progress in person-
alized QoS recommendations. NIMF combines traditional neighborhood
methods with matrix factorization, and its performance is slightly im-
proved compared to PMF. LDCF combines multi-layer perceptron (MLP)
with a similarity adaptive correction mechanism to improve nonlinear
modeling capabilities. NeuMF uses MLP and generalized matrix factor-
ization to model the complex interactions between users and services,
which to a certain extent makes up for the shortcomings of traditional
methods. BGCL builds a dual-subgraph structure through graph con-
trastive learning, which strengthens the perception and modeling capa-
bilities of user and service embedding features and improves prediction
accuracy. The results in the table show that our solution improves MAE
and RMSE by up to 8.70% and 6.12% on RT, and 6.75% and 2.20% on
TP compared with the best performance of the comparison solution, re-
spectively. TEPP achieves excellent prediction performance mainly due
to two key designs: �rst, the introduction of a trust management mecha-
nism and an enhanced similarity calculation method e�ectively quantify
and mine trust relationships between users, thereby improving the re-
liability of neighborhood selection; second, an adaptive fusion model
based on two weighting parameters is constructed to dynamically in-
tegrate user’s past preferences and the trust information between users
and services, thereby improving both prediction accuracy and general-
ization ability.

To compare and analyze the QoS prediction performance of the pro-
posed methods in privacy-preserving scenarios, we set the privacy bud-
get ✏ = 0.5 in the comparative experiments and compared TEPP with
four mainstream privacy-preserving schemes. The experimental results
are presented in Tables 4 and 5, where TEPP demonstrates signi�cant
advantages in several evaluation metrics. Speci�cally, TEPP achieves at
least 3.41% and 3.98% improvements in MAE and RMSE on RT, respec-
tively. It also improves MAE by at least 10.27% on TP. The improve-
ment in the RMSE metric is relatively small, except for the case where
TEPP performs worse than the baseline at 0.2% matrix density, which
still shows excellent performance. In summary, TEPP exhibits good QoS
prediction performance even at this very low matrix density, and it is
expected to maintain strong predictive capability as the matrix density
increases. TEPP’s excellent performance in privacy-preserving scenarios
is primarily attributed to the adoption of the exponential mechanism,
which ensures the protection of users’ private information. Compared

with other di�erential privacy methods (e.g., the Laplace mechanism),
the exponential mechanism is more suitable for discrete selection tasks
in service recommendation, as it protects user privacy while maintain-
ing the accuracy of prediction results.

To further verify the generalization ability and scalability of the
TEPP solution under di�erent data scales, we conducted experiments on
the D2-Sub-RT and D1 datasets, with the results presented in Tables 6
and 7. The results indicate that TEPP consistently achieves superior per-
formance across di�erent data scales.

As shown in Table 6, TEPP achieves improvements of 12.68% and
5.83% in MAE and RMSE, respectively, compared with the best perfor-
mance of other competing methods on the D2-Sub-RT dataset. TEPP also
demonstrates superior performance among privacy-preserving methods,
achieving at least 13.88% and 6.73% improvements in MAE and in
RMSE, respectively.

In addition, to perform the BGCL and LDCF comparison scheme on
the D1 dataset, we obtain the user’s country and Autonomous System
Number (ASN) from the Client IP by using the IP Location Finder2 and
Team Cymru3 tools, respectively, and then convert the country into a
numeric code by using the United Nations M.49 Area Numeric Coding
(UN M.49)4, while the ASN retains only its numeric part. "Unknown"
and other invalid entries are uniformly represented as "*1". The limited
availability of only the user’s country and ASN information results in the
overall low prediction accuracy of BGCL and LDCF on this dataset. Nev-
ertheless, Table 7 illustrates that TEPP still outperforms other state-of-
the-art schemes on the D1 dataset, achieving at least 1.31% and 0.57%
improvements in theMAE and RMSE on RT, respectively. Under privacy-
preserving scenarios, the MAE and RMSE are further improved by at
least 1.55% and 1.99%, respectively, which further veri�es the superi-
ority and scalability of TEPP in diverse data environments.

6.5.2. Ablation experiments and analysis
We conduct ablation experiments on the D2 dataset to verify the

advantages of the fusion model through three experimental: a) Impact
of the similarity weight factor; b) The advantages of the fusion model;
c) Impact of the privacy budget.

Impact of similarity weight factor. To validate the bene�ts of in-
corporating the similarity weight factor, we compare TEPP schemes
with and without this factor. We refer to the TEPP scheme without the

2 https://www.iplocation.net/
3 http://www.team-cymru.com/
4 https://en.wikipedia.org/wiki/UN_M49
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Fig. 3. Impact of similarity weight factor.

Fig. 4. The advantages of the fusion model.

similarity weight factor as TEPP-SW.We conducted experiments on both
schemes for RT and TP, respectively, and presented the detailed results
in Fig. 3. As shown in the �gures, it is evident that all TEPP-SW values
are higher than those of TEPP. In other words, the prediction perfor-
mance of TEPP is superior to that of TEPP-SW. For instance, in Fig. 3(a),
the MAE of TEPP-SW is 0.7178, compared to 0.666 for TEPP at a matrix
density of 0.1%. Similarly, in Fig. 3(c), the MAE of TEPP-SW is 44.6139,
while that for TEPP is 40.3329 at a matrix density of 0.1%. Thus, we
conclude that introducing the similarity weight factor reduces the pre-
diction error.

The advantages of the fusion model. To assess the individual con-
tributions of user-based, user preference-based, and service-based QoS
prediction components, we compare the proposed method with three of
its variants. These variants are denoted as TEPP-U, TEPP-UP, and TEPP-
S, where TEPP-U excludes the in�uence of users, TEPP-UP excludes
the in�uence of user preferences, and TEPP-S excludes the in�uence
of services. In TEPP-U (� = 0, 0 < ⌫ < 1), the fusion model is expressed
as Rij = ⌫ � Rs

ij + (1 * ⌫) � Rp
ij , which involves only the user preference-

based and service-based prediction components. TEPP-UP excludes the

user preference-based component by setting � + ⌫ = 1, resulting in the
fusion model being transformed into Rij = � � Ru

ij + ⌫ � Rs
ij , which re-

tains only the user-based and service-based prediction components. In
TEPP-S (0 < � < 1, ⌫ = 0), the fusion model is represented as Rij =
� � Ru

ij + (1 * �) � Rp
ij , involving only the user-based and user preference-

based components. We evaluated the prediction performance of these
three variant schemes on RT and TP, and the speci�c experimental re-
sults are also presented in Fig. 4.

As illustrated in Fig. 4, TEPP achieves superior prediction perfor-
mance over the three simpli�ed variants. Speci�cally, compared with
the best-performing variant TEPP-S, TEPP achieves at least 1.08% and
0.62% improvements in MAE and RMSE on RT, respectively. In terms of
TP, compared with TEPP-UP, TEPP’s MAE and RMSE are also improved
by at least 2.17% and 0.92%, respectively. Overall, these results demon-
strate that the fusion strategy proposed in this paper o�ers signi�cant
advantages in enhancing QoS prediction performance.

Impact of the privacy budget. To verify the impact of the privacy
budget on the prediction accuracy of the TEPP scheme, we set the pri-
vacy budget ✏ to 0.1, 0.5, 0.9, and 1.0, and the experimental results are

Fig. 5. Impact of the privacy budget.
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shown in Fig. 5. A larger privacy budget ✏ results in less added noise
and lower privacy protection, but it also leads to improved prediction
accuracy. In other words, although a smaller ✏ can provide stronger pri-
vacy protection, it will lead to an increase in prediction error. As shown
in Fig. 5, as ✏ increases, the MAE and RMSE values gradually decrease,
indicating improved prediction accuracy. Taking response time as an
example, the MAE and RMSE of ✏ = 0.1 increased by at least 2.87% and
1.96% compared to ✏ = 1.0, respectively; and when ✏ increased from 0.9
to 1.0, the MAE and RMSE decreased by no less than 0.19% and 0.03%,
respectively. In terms of throughput prediction, the MAE and RMSE of
✏ = 1.0 decreased by at least 7.11% and 5.19% compared to ✏ = 0.1.
In addition, as ✏ increases, the gap between the error values gradually
narrows, indicating that the prediction results gradually become more
accurate, further verifying that the TEPP scheme achieves a favorable
trade-o� between prediction performance and privacy.

6.6. Experimental analysis of bilateral trust model

We describe the bilateral trust model based on game theory in Sec-
tion 5. Next, in this part, to assess the in�uence of various parameters on
the trust game, we utilize MATLAB 2023b to conduct simulation exper-
iments on the changing trends of the proposed trust game model under
di�erent parameters and the initial proportion of participants engaging
in trusting behaviors.

6.6.1. Steady state strategy analysis
As depicted in Table 3, the bilateral trust model contains a total of

eight steady state strategies. After analyzing these several situations, we
conduct simulation experiments on the evolution trends of eight steady
state strategies, as illustrated in Fig. 6. The speci�c parameter assign-
ments are shown in Table 8. In Fig. 6(a), when 0 <  < 1, for strate-
gies I, II-(1), and III-(1), the overall participation trust behavior will be

Table 8
Parameter settings for steady state strategies.

Strategies (, Bi, Ai, Ci) Strategies (, Bi, Ai, Ci)

I (0.5,5,1,1) II-(1) (0.6,3,1,2)
III-(1) (0.8,3,2,4) VI (0.9,3,1,5)
V (2,2,1,1) VII-(1) (2,2,6,7)
VIII-(2) (2,3,4,8) IX-(2) (2,3,1,8)

shown. Even if the proportion of initial participants is extremely low,
these participants will continue to enter the game of trusting behavior.
This is because for these three strategies, the bene�ts obtained by play-
ers participating in the game are greater than the costs. For example:
in strategy I, participants will participate in the trust game in a short
period of time and quickly evolve into performing trust behaviors; in
the two cases of strategy II-(1) and strategy III-(1), although partici-
pants will also participate in the trust game, the tendency to evolve into
trusting behavior is slower than strategy I. This is because the bene�ts
obtained by the players in strategy II-(1) and strategy III-(1) are smaller
than those in strategy I. On the contrary, in strategy IV, although the
proportion of initial players is quite high, it will not induce the inter-
est of subsequent players to participate in the trust game, because the
costs paid by the players under this strategy are more than the bene�ts
obtained. In addition, we conclude that in the trust game, dynamic co-
e�cients will also have an impact. In Fig. 6(b), when  > 1, in strategy
V, although the bene�ts obtained by the participants are less than those
in strategy I, they will still evolve to perform trusting behavior, but the
evolution trend speed is relatively The strategy is slower. For strategies
VII-(1) and VIII-(2), as the cost of participants increases, participants
will still enter the trust game with a very slow trend. This is because
more rewards are given to these participants. They get more bene�ts.
However, in strategy IX-(2), although the dynamic coe�cient is larger
than that in strategy IV, the cost paid is higher, which results in that
no matter how large the initial proportion of participants is, they will
eventually evolve into not participating in trusting behavior.

6.6.2. Dynamic strategy analysis
In the analysis of dynamic strategies, we can see from Table 3 that

there are �ve dynamic strategies. To validate the evolutionary process
of these �ve strategies and analyze how participants’ trust behaviors
change with varying dynamic coe�cients, we conducted simulations
with di�erent dynamic coe�cients and initial participant ratios. The
speci�c results are illustrated in Figs. 7 and 8. For 0 <  < 1, we analyze
strategies II-(2) and III-(2), and present the speci�c results in Fig. 7. As
illustrated in the �gure, regardless of changes in the dynamic coe�cient
and p value, the �nal evolutionary trend does not exhibit a tendency
toward engaging in trusting behavior. Nevertheless, it is worth noting
that with the increase in both the k value and p value, the proportion
of initial participants gradually increases but stabilizes quickly. Hence,
under these two strategies, maximizing the dynamic coe�cient value is

Fig. 6. Evolutionary graph of steady state. (a) 0 <  < 1; (b)  > 1.

14



W.-w. Wang et al. Expert Systems With Applications xxx (xxxx) xxx

Fig. 7. Evolutionary graph of dynamic strategy with 0 <  < 1. (a) Strategy II-(2); (b) Strategy III-(2).

Fig. 8. Evolutionary graph of dynamic strategy with  > 1. (a) Strategy VI; (b) Strategy VIII-(1); (c) Strategy IX-(1).

crucial to encourage more participants to engage in trusting behaviors.
When  > 1, the results of our dynamic strategy simulation are presented
in Fig. 8, depicting three dynamic strategies: VI, VIII-(1), and IX-(1).
Within these three strategies, participants with an initial participation
rate of p À (0, p3) evolve to refrain from trusting actions, while those
with an initial participation rate of p À (p3, 1) evolve to perform actions
of trust.

7. Conclusion

This paper introduces a novel robust trust-enhanced privacy-
preserving QoS prediction method, named TEPP, which synergistically
integrates a Dirichlet-based reputation system, the exponential mecha-
nism, and a bilateral trust model. TEPP e�ectively addresses the cru-
cial trade-o�s between user privacy, prediction performance, and sys-
tem stability in Web service recommendation. Firstly, TEPP achieves
excellent prediction accuracy by incorporating user trust values, actual
preferences, and service trust values into an adaptive prediction model.
Compared to the baseline scheme on common datasets, it achieves im-
provements of up to 8.70% in MAE and 6.12% in RMSE on RT, and
improvements of up to 6.72% and 2.20% in MAE and RMSE on TP, re-
spectively. Secondly, the incorporation of an exponential mechanism
for privacy protection has been shown to e�ectively safeguard user
information with minimal impact on prediction performance, and the

prediction accuracy has increased by up to 3.73% in MAE and 11.07%
in RMSE compared with other privacy protection schemes. Furthermore,
the bilateral trust model embedded in TEPP has been shown to en-
hance system stability and encourage trust participation from both users
and service providers when the initial proportion of participants per-
forming trusted behaviors reaches a certain range. These results high-
light the signi�cant value of TEPP, which not only improves QoS pre-
diction accuracy and e�ectively protects user privacy, but also pro-
motes the construction of more reliable and user-centric service rec-
ommendation systems. Future research will explore the integration of
blockchain technology to further enhance the credibility and system
robustness of privacy-preserving QoS prediction in distributed service
recommendation.
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